Distiller is a PyTorch-based library created by intel with algorithms to reduce the weight of Deep Learning models. The main examples of weight reduction of the model are Quantization, Pruning, Distillation, etc., and Distiller is easy to use. In addition, the tutorial even included a function that allows you to check the learning status in solidarity with TensorBoard (thanks).
Click here for a detailed site about model weight reduction https://laboro.ai/column/%E3%83%87%E3%82%A3%E3%83%BC%E3%83%97%E3%83%A9%E3%83%BC%E3%83%8B%E3%83%B3%E3%82%B0%E3%82%92%E8%BB%BD%E9%87%8F%E5%8C%96%E3%81%99%E3%82%8B%E3%83%A2%E3%83%87%E3%83%AB%E5%9C%A7%E7%B8%AE/
$ git clone https://github.com/NervanaSystems/distiller.git
$ cd distiller
$ pip install -r requirements.txt
$ pip install -e .
$ python
>>> import distiller
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/mnt/PytorchIntro/distiller/distiller/__init__.py", line 20, in <module>
    from .config import file_config, dict_config, config_component_from_file_by_class
...
  File "/root/local/python-3.7.1/lib/python3.7/site-packages/git/exc.py", line 9, in <module>
    from git.compat import UnicodeMixin, safe_decode, string_types
  File "/root/local/python-3.7.1/lib/python3.7/site-packages/git/compat.py", line 16, in <module>
    from gitdb.utils.compat import (
ModuleNotFoundError: No module named 'gitdb.utils.compat'
In my case, when I tried to import the Distiller added to the library, I got an error related to the git library, so I downgraded the bad gitdb2 and it was fixed. (My installed version is 4.0.2)
$ pip uninstall gitdb2
$ pip install gitdb2==2.0.6
Confirmation
$ cd distiller/examples/classifier_compression/
$ python3 compress_classifier.py --arch simplenet_cifar ../../../data.cifar10 -p 30 -j=1 --lr=0.01
--------------------------------------------------------
Logging to TensorBoard - remember to execute the server:
> tensorboard --logdir='./logs'
=> created a simplenet_cifar model with the cifar10 dataset
Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to ../../../data.cifar10/cifar-10-python.tar.gz
 99%|█████████████████████████████████████████████████████████████████████████████▌| 169582592/170498071 [00:18<00:00, 11451969.71it/s]Extracting ../../../data.cifar10/cifar-10-python.tar.gz to ../../../data.cifar10
Files already downloaded and verified
Dataset sizes:
        training=45000
        validation=5000
        test=10000
Training epoch: 45000 samples (256 per mini-batch)
170500096it [00:30, 11451969.71it/s]                                                                                                   Epoch: [0][   30/  176]    Overall Loss 2.303411    Objective Loss 2.303411    Top1 10.299479    Top5 50.104167    LR 0.010000    Time 0.038285
Epoch: [0][   60/  176]    Overall Loss 2.301507    Objective Loss 2.301507    Top1 10.774740    Top5 51.328125    LR 0.010000    Time 0.037495
Epoch: [0][   90/  176]    Overall Loss 2.299031    Objective Loss 2.299031    Top1 12.335069    Top5 54.973958    LR 0.010000    Time 0.037465
Epoch: [0][  120/  176]    Overall Loss 2.293749    Objective Loss 2.293749    Top1 13.424479    Top5 57.542318    LR 0.010000    Time 0.037429
Epoch: [0][  150/  176]    Overall Loss 2.278429    Objective Loss 2.278429    Top1 14.692708    Top5 59.864583    LR 0.010000    Time 0.037407
Parameters:
+----+---------------------+---------------+---------------+----------------+------------+------------+----------+----------+----------+------------+---------+----------+------------+
|    | Name                | Shape         |   NNZ (dense) |   NNZ (sparse) |   Cols (%) |   Rows (%) |   Ch (%) |   2D (%) |   3D (%) |   Fine (%) |     Std |     Mean |   Abs-Mean |
|----+---------------------+---------------+---------------+----------------+------------+------------+----------+----------+----------+------------+---------+----------+------------|
|  0 | module.conv1.weight | (6, 3, 5, 5)  |           450 |            450 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.07800 | -0.01404 |    0.06724 |
|  1 | module.conv2.weight | (16, 6, 5, 5) |          2400 |           2400 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.04952 |  0.00678 |    0.04246 |
|  2 | module.fc1.weight   | (120, 400)    |         48000 |          48000 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.02906 |  0.00082 |    0.02511 |
|  3 | module.fc2.weight   | (84, 120)     |         10080 |          10080 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.05328 |  0.00084 |    0.04607 |
|  4 | module.fc3.weight   | (10, 84)      |           840 |            840 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.06967 | -0.00275 |    0.06040 |
|  5 | Total sparsity:     | -             |         61770 |          61770 |    0.00000 |    0.00000 |  0.00000 |  0.00000 |  0.00000 |    0.00000 | 0.00000 |  0.00000 |    0.00000 |
+----+---------------------+---------------+---------------+----------------+------------+------------+----------+----------+----------+------------+---------+----------+------------+
Total sparsity: 0.00
--- validate (epoch=0)-----------
5000 samples (256 per mini-batch)
==> Top1: 25.240    Top5: 75.520    Loss: 2.060
==> Best [Top1: 25.240   Top5: 75.520   Sparsity:0.00   NNZ-Params: 61770 on epoch: 0]
Saving checkpoint to: logs/2020.05.02-235616/checkpoint.pth.tar
...
For the time being, I'm relieved because it moved ε- (´∀ ` *) Hot I will add it as soon as I find something.
https://github.com/NervanaSystems/distiller
Recommended Posts